Together with Jesus, we grow in love

Holy Family Catholic Primary School

Calculation Policy

Last Reviewed: Sep 2021
Review date Sep 2022

Introduction

We have adapted this policy from School Improvement Liverpool.

The policy focuses on the four operations of addition, subtraction, multiplication and division and includes a list of the key mental maths skills that support written methods.

For each operation, there are stages, starting with the practical methods that support conceptual understanding moving through to methods that allow children to demonstrate efficiency in procedural approaches.

It is important to emphasise that alternative methods may be more appropriate for certain calculations and that informal methods currently used successfully in schools may continue to be used as they support the raised expectations in calculation outlined in this policy. At Holy Family, we use a 'Stage not age' approach where teacher knowledge of individual children is used to ascertain which stage a child is at and therefore, which strategies they will be using.

ddition

Vritten methods for addition

I is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of a Idition.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and \checkmark ith confidence.
(hildren are taught and acquire secure mental methods of calculation and one written method of calculation for addition which they know they can rely on when r ental methods are not appropriate.
his policy shows the possible stages of each written method for addition, each stage building towards a more refined method.
here are some key basic skills that children need to help with addition, which include:
counting
estimating amounts and totals
recalling all addition pairs to 10,20 and $100(7+3=10,17+3=20,70+30=100)$
knowing number facts to $10(6+2=8)$
adding mentally a series of one-digit numbers $(5+8+4)$
adding multiples of $10(60+70)$ or of $100(600+700)$ using the related addition fact, $6+7$, and their knowledge of place value
partitioning two-digit and three-digit numbers into multiples of 100,10 and 1 in different ways (432 into $400+30+2$ and also into $300+120+12$) - (Additive component of place value):

understanding and using addition and subtraction as inverse operations

Using and applying i calculation it is impo using inverse missing box questi using units of mea word problems open ended investi	s a key theme and one of the aims of rtant that their skills are broadened th ns sure including money and time gations	National Curriculum and before children move onto th rough their use and application in a range of context	e next stage in written ;, these include:
Objective and Strategies	Concrete	Pictorial	Abstract
Combining two arts to make whole: parthole model	Use a variety of concrete items, eg. cubes, toys, Cuisenaire rods and Numicon, to add two numbers together, as a group. Placing cubes in a bar formation builds understanding of the bar model.	Use given pictures to add two numbers together, as a group. Pictures can be shown in a bar formation. Children can then progress to drawing their own pictures, or dots, to represent the numbers. Link work with cubes, to the bar model, by initially shading individual squares, to represent the numbers.	Use numerical recording, alongside concrete and pictorial representations, to help children progress towards an abstract understanding of numbers. $\begin{aligned} & 4+3=7 \\ & 3+4=7 \\ & 7=3+4 \\ & 7=4+3 \end{aligned}$

		Circle the larger number. Count on in ones. How many have you got altogether?	
grouping to ke 10 .	Children can begin to calculate more efficiently, by partitioning the number to be added. They make a whole group of 10 first, then add the remainder. $6+5=11$ Start with the larger number. How many more do you need to make 10? How many have you got left to add?	Children can show their understanding of regrouping using a number line.	Children regroup mentally, in order to add efficiently. $7+4=11$ Start with the larger number. How many more do you need to make 10 ? How many have you got left to add?
ding three ingle digits	Children can calculate efficiently, by looking for pairs of numbers that total 10 , then adding the third number. $4+7+6=10+7=17$		$(4)+7+6)=10+7=17$ Add the two numbers that make 10. Then add the remaining number.

Subtraction

ritten methods for Subtraction

is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written ethods of subtraction.
he aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and ith confidence.
(hildren are taught and acquire secure mental methods of calculation and one written method of calculation for subtraction which they know they can rely on v hen mental methods are not appropriate.
is policy shows the possible stages of each written method for subtraction, each stage building towards a more refined method.

There are some key basic skills that children need to help with subtraction, which include:
counting
estimating
recalling all addition pairs to 10,20 and 100 along with their inverses $(7+3=10,10-3=7,17+3=20,20-3=17,70+30=100,100-30=$ 70)
knowing number facts to 10 and their inverses ($6+2=8,8-2=6$)
subtracting multiples of $10(160-70)$ using the related subtraction fact, 16-7, and their knowledge of place value
partitioning two-digit and three-digit numbers into multiples of 100,10 and 1 in different ways (432 into $400+30+2$ and also into $300+120+$
12) understanding and using subtraction and addition as inverse operations

I sing and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it i important that their skills are broadened through their use and application in a range of contexts, these include:

```
using inverse
missing box questions
using units of measure including money and time
word problems
open ended investigations
```


	10 is the whole. 6 is one of the parts. What is the other part?9-2	Use the bar model to help children find related addition and subtraction calculations.	$4+6=10$ $10=4+6$ $10-4=6$ $6=10-4$
		5	
		3 2	
I egrouping to r make 10	As with addition, children can begin to calculate more efficiently, by partitioning the number to be subtracted. They subtract part of the number, to leave a multiple of 10 , and then subtract the remainder $14-5=9$	Children can show their undestanding of regrouping, using a number line.	Children regroup mentally, in order to subtract efficiently. $13-7=6$ How many do you need to subtract to leave 10? How many have you got left to subtract?
ubtracting 2igit numbers sing quipment or ictorial upport	Represent the calculation on a calculation mat, using Base 10. Children remove the number to be subtracted. They count the equipment that remains	Children can then draw Base 10 and cross out the number they are subtracting. They count the remaining number, to find out how many are left. When regrouping is required, children can cross out one ten, and draw ten 1 s in its place, before subtracting.	Children partition the number to be subtracted, to support them in calculating mentally. $\begin{aligned} & 43-26=23-6=17 \\ & \text { (20) } 6 \end{aligned}$

	 Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		understanding of subtracting any number, including decimals. $$

Multiplication

Vritten methods for multiplication

I is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of r ultiplication.
he aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method accurately and \checkmark ith confidence.

Children are taught and acquire secure mental methods of calculation and one written method of calculation for multiplication which they know they can rely on whe r ental methods are not appropriate.
nis policy shows the possible stages of each written method for multiplication, each stage building towards a more refined method.
here are some key basic skills that children need to help with multiplication, which include:
counting
estimating
understanding multiplication as repeated addition
recalling all multiplication facts to 12×12
partitioning numbers into multiples of one hundred, ten and one
working out products ($70 \times 5,70 \times 50,700 \times 5,700 \times 50$) using the related fact 7×5 and their knowledge of place value adding two
or more single-digit numbers mentally
adding multiples of $10(60+70)$ or of $100(600+700)$ using the related addition fact, $6+7$, and their knowledge of place value adding combinations of whole numbers
understanding and using division and multiplication as inverse operations
sing and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it i important that their skills are broadened through their use and application in a range of contexts, these include:
using inverse
missing box questions
using units of measure including money and time
word problems
open ended investigations

unting in
Itiples

epeated ddition－ nking to hultiplication	由田田 $5+5+5=15$ 3 groups of 5 equals 15 $3 \times 5=15$ $3+3+3=9$ $3 \times 3=9$ 3 groups of $3=9$ Use Cuisenaire rods as shown above	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ 2 add 2 add 2 equals 6 3 groups of $2=3 \times 2=6$ $5+5+5=15$ 3 groups of $5=3 \times 5=15$	Write addition sentences to describe objects and pictures． 5 groups of $2=5 \times 2=10$

	Create arrays using counters/ cubes to show multipli cation senten ces. Cuisenaire Rods - create the shape with 5 lots of 3 and 3 lots of 5 Pile on top - same size	Draw arrays in multiplication $\begin{aligned} & 7 \times 3=21 \\ & 3 \times 7=21 \end{aligned}$ Link arrays to	different rotations to find co ntences. s of 4 s $4 \times 6=24$ Children use their knowledge of known multiplication tables This 3×7 array can also be seen as 3×5 add 3×2 rea of rectangles.	utative $\begin{aligned} & 000 \\ & 6 \times 4=24 \end{aligned}$	Use an array to write multiplication sentences and reinforce repeated addition.$\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$Commutative Property $3 \times 5=16$ Repeated Addition $5+5+5=15$ Groups of: 8 5×3

| | | the total cost? |
| :--- | :--- | :--- | :--- | :--- | :--- |

Vritten methods for division

is important that children's mental methods of calculation are practised on a regular basis and secured alongside their learning and use of written methods of vision.
he aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use a written method curately and with confidence.
(hildren are taught and acquire secure mental methods of calculation and one written method of calculation for division which they know they can rely on when r ental methods are not appropriate.
is policy shows the possible stages of each written method for division, each stage building towards a more refined method.

There are some key basic skills that children need to help with division, which include:
counting
estimating
understanding division as repeated subtraction
partitioning two-digit and three-digit numbers into multiples of 100,10 and 1 in different ways (432 into $400+30+2$ and also into $300+120+12$) recalling multiplication and division facts to 12×12
recognising multiples of one-digit numbers and dividing multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value
knowing how to find a remainder working mentally, for example, find the remainder when 48 is divided by 5
understanding and using division and multiplication as inverse operations

I sing and applying is a key theme and one of the aims of National Curriculum and before children move onto the next stage in written calculation it important that their skills are broadened through their use and application in a range of contexts, these include:
using inverse
missing box questions
using units of measure including money and time

word problems

open ended investigations

Short division

Appendix One

