Maths workshop

Tuesday $3^{\text {rd }}$ December

altogether

total
add

Addition

plus
sum

Objective and Strategies	Concrete	Pictorial	Abstract
Starting at the bigger number and counting on	Children represent the larger number, using concrete equipment, and then count on in 1s, while adding the correct number of beads, counters etc. $8+4=12$ $12+5=17$	Children progress to counting on using a number track, then a number line. Flacing cubes on a number track, can help to reinforce children's understanding of the number sequence. $12+5=17$ Circle the larger number. Count on in ones. How many have you got altogether?	Children can begin to calculate mentally, by placing the larger number in their head and counting on in 15, using their fingers to keep track of the count. $5+12=17$ Put the larger number in your head. Count on in ones. How many have you got altogether?

Objective and Strategies	Concrete	Pictorial	Abstract
Regrouping to make 10.	Children can begin to calculate more efficiently, by partitioning the number to be added. They make a whole group of 10 first, then add the remainder. $6+5=11$ Start with the larger number. How many more do you need to make 10 ? How many have you got left to add?	Children can show their understanding of regrouping using a number line. $9+5=14$ (1) 4	Children regroup mentally, in order to add efficiently. $7+4=11$ Start with the larger number. How many more do you need to make 10 ? How many have you got left to add?

* To do this they have to be secure with their number bonds to 10 .

Objective and Strategies
Ading thipe Single digits
Children can calculate efficiently, by looking for pairs of numbers that total 10,

subtract

difference

minus

Subtraction

less
take away

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away	Use s variety of concrete items erdy toys, counters, cubes, to model taking a number away from a group. ones	Cross out drawn objects to show what has been taken sway.	Use numerical recording, slongside concrete and pictorial representations, to help children progress towards an abstract understanding of numbers.
$8-2=4$		$8-2=6$	

Objective and Strategies	Concrete	Pictorial	Abstract
Counting back	Represent the larger number using concrete equipment. Count back in ones, as you remove the correct number of beads / cubes.	Placing cubes on a number line makes links between different representations. Children can count back using a number track, then number line. Circle the larger number. Count back in 1 s . How many have you got left?	Children can begin to calculate mentally, by placing the larger number in their head and counting back in 1 s , using their fingers to keep track of the count. $13-4=9$ Put the larger number in your head. Count back in ones. How many have you got left?

Objective and Strategies	Concrete	Pictorial	Abstract
Relate subtraction to addition	Use part whole models and culsenaire, rods to help children understand the inverse relationship between addition and subtraction. 10 is the whole. 6 is one of the parts. What is the other part? $9-2$	Use a pictorial representation of objects to show the part whole model. Use the bar model to help children find related addition and subtraction calculations.	Children can progress to recording numbers within the part whole model. $\begin{array}{ll} 6+4=10 & 10=8+4 \\ 4+6=10 & 10=4+6 \\ 10-4=6 & 6=10-4 \\ 10-6=4 & 4=10-6 \end{array}$

Objective and Strategies	Concrete	Pictorial	Abstract
Regrouping to make 10	As with addition, children can begin to calculate more efficiently, by partitioning the number to be subtracted. They subtract part of the number, to leave a multiple of 10 , and then subtract the remainder $14-5=9$	Children can show their undestanding of regrouping. using a number line.	Children regroup mentally, in order to subtract efficiently. $13-7=6$ How many do you need to subtract to leave 10 ? How many have you got left to subtract?

Objective and Strategies	Concrete	Pictorial	Abstract	
Subtracting 2digit numbers using equipment or pictorial support	Represent the calculation on a calculation mat, using Base 10 . Children remove the number to be subtracted. They count the equipment that remains Where regrouping is required, children can exchange one 10 for ten 1 s , before subtracting. $43-26=$ They can now subtract 26.	Children can then draw Base 10 and cross out the number they are subtracting. They count the remaining number, to find out how many are left. $\begin{aligned} & 55-21=34 \\ & \nmid \nmid \\|:: \end{aligned}$ When regrouping is required, children can cross out one ten, and draw ten 1 s in its place, before subtracting. Children can also draw a number line, to support mental calculation.	Children partition the number to be subtracted, to support them in calculating mentally. $43 \cdot 26=23-6=17$ (20) 6	

repeated addition

groups of

multiply

Multiplication

times
double

| Objective and
 Strategies | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Doubling | Use practical activities to show how to
 double a number. | Draw pictures to show how to double a number. | |

Objective and Strategies	Concrete	Pictorial	Abstract
Counting in multiples	Count in multiples supported by concrete objects in equal groups. Use Cuisenaire rods to support use of model	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25,30

Objective and Strategies	Concrete	Pictorial	Abstract
Repeated addition－ linking to multiplication	$5+5+5=15$ 3 groups of 5 equals 15 $3 \times 5=15$ $3+3+3$ $\begin{aligned} & 3+3+3=9 \\ & 3 \times 3=9 \end{aligned}$ 3 groups of $3=9$ Use Cuisenaire rods to show repeated addition	There awe 3 plates．Each plate has 2 star biscuts on．How many Bisculsi are nere？ 2 add 2 add 2 equals 6 3 groups of $2=3 \times 2=6$ $5+5+5=15$ 3 groups of $5=3 \times 5=15$	Write addition sentences to describe objects and pictures． 5 groups of $2=5 \times 2=10$

Objective and Strategies	Concrete	Pictorial				
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.		different rotations to find sentences.	mmutative e.e $6 \times 4=24$	Use an array to writemultiplication sentences and reinforce repeated addition.	
		$\left.\begin{array}{l}000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000\end{array}\right] \quad$?			$\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$	
						$5+5+5=15$
					(3) (8) 3	$\underbrace{3} \text { moner }$

divided by

shared by

Division

half
equal groups of

Objective and Strategies	Concrete	Pictorial	Abstact
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $20 \div 4=5$ 20 divided into groups of 4 equalls 5	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
	$20 \div 5=4$	20 5 5 5 5	

| Objective and
 Strategies | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Division within | | | |
| arrays | | | |

Working at the expected standard

- add and subtract any 2 two-digit numbers using an efficient strategy, explaining their method verbally, in pictures or using apparatus (e.g. $48+35 ; 72-17$)
- recall all number bonds to and within 10 and use these to reason with and calculate bonds to and within 20, recognising other associated additive relationships
(e.g. If $7+3=10$, then $17+3=20$; if $7-3=4$, then $17-3=14$; leading to if $14+3=$ 17 , then $3+14=17,17-14=3$ and $17-3=14$)
- recall multiplication and division facts for 2,5 and 10 and use them to solve simple problems, demonstrating an understanding of commutativity as necessary

Working at greater depth

- use reasoning about numbers and relationships to solve more complex problems and explain their thinking (e.g. $29+17=15+4+\square$;' 'together Jack and Sam have $£ 14$. Jack has $£ 2$ more than Sam. How much money does Sam have?' etc.)
- solve unfamiliar word problems that involve more than one step (e.g. 'which has the most biscuits, 4 packets of biscuits with 5 in each packet or 3 packets of biscuits with 10 in each packet?')

12
$7+84=$ \square
$1168+20=\square$ 8 $8_{\text {tioltiol }}^{88}$

12
$7+84=91$
84 47nmanfl
(24) Sam plays a moths game.

Eoch
is equol to $\mathbf{2}$ points.
$\int^{3} 3+O+O=10$ points

How many points is one 13 equal to?

(2) There are $\mathbf{1 0 0} \mathbf{g}$ of chocolate chips in the bog. Sito uses $\mathbf{2 5 g}$.

Ben uses $\mathbf{3 5} \mathbf{g}$.

How many groms of chocolote chips are left in the bag?

24 Sam ploys a moths gane.
Sam ploys a motha gane

How mony points is one

$2+2=4$
$4=6$
(2) There are 100 g of chocolote cilips in the bag.

Sita uses $\mathbf{2 5} \mathbf{g}$.
Ben uses $\mathbf{3 5} \mathbf{g}$.

How mony groms of chocolote chips are left in the bog?

